If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+8a=150=0
We move all terms to the left:
a^2+8a-(150)=0
a = 1; b = 8; c = -150;
Δ = b2-4ac
Δ = 82-4·1·(-150)
Δ = 664
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{664}=\sqrt{4*166}=\sqrt{4}*\sqrt{166}=2\sqrt{166}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{166}}{2*1}=\frac{-8-2\sqrt{166}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{166}}{2*1}=\frac{-8+2\sqrt{166}}{2} $
| 2/3(z-4)=6 | | 4-5z=3-2 | | 72/m-72/m+0.9=4 | | x/x-5=3 | | P(x)=2x4-3x3-12x2-7x+6 | | (x/2+5)3=3 | | 55p+100=13 | | x/8-25=75 | | 12/16q=144 | | (x-0.25/x)^4=100 | | 5l=100 | | 6m+20=60 | | t/2-10=50 | | 5/8x+20=60 | | 2x2+40x-7000=0 | | T^2+80t=900 | | 6000=p+p(4.25)(713) | | (13x+3)+(9x+1)=0 | | 65=7s-5 | | -70=7(u-9) | | 80x-560=1520 | | 0.2=x5 | | 8x-3+9x=2x+5-4x | | 4x+7=-7x-8 | | 4x+7=-7-8 | | F(x)=4.3x+38 | | 7/1x+1/3x=2+5/3x | | b2-5b=-6 | | 8x+1x=-x-1 | | x(x+12)=10x+8 | | 4y+86=-4 | | -2n+6+6n=1+5n+3 |